

Water management in lowland peat soils

Prof Ian Holman and Dr Nick Girkin

17th April 2023

www.cranfield.ac.uk

- Importance of water management for peatland management and GHG emissions
- Basics of land drainage for watertable control
- The challenge(s) of assessing in-field watertables
- Case study: deriving peatland GHG emissions in The Broads, UK
- Reducing emissions
- Conclusions

Cranfield University

Waltham (2000). Mercian Geologist 15(1): 49-51

Deeper in-field watertable = more GHG emissions

Evans et al. (2021). https://doi.org/10.1038/s41586-021-03523-1

Cranfield University

Challenges of assessing in-field watertables

Water levels:

- 1. IDB Main drain water levels unknown
- 2. Non-IDB drain water levels unknown
- 3. Presence of under-drains unknown
- 4. Condition of under-drains unknown
- 5. Pump on-off levels known

Water level controls:

- 1. Levels of IDB water control structures known
- 2. Non-IDB water control structures unknown

- Emissions are a function of watertable depth
 - High watertable ⇒ CH₄ emissions
 - Low watertable ⇒ CO₂ emissions
- Watertable depth depends on:
 - Weather (time of year)
 - Drainage (surface water level / freeboard)
 - Drain spacing
 - Landcover (evapo-transpiration)
 - Additional water inputs e.g. groundwater discharge / flooding

Deriving peatland GHG emissions in The Broads, UK

- 1. Derived drain water level height for all fields within the areas of peat soils
 - Validated against IDB on-off levels and EA gaugeboards
- 2. Calculated the average freeboard (difference between the elevation of the drain water level and the field) for each field;
- 3. Estimated drain spacing for all fields;
- 4. Simulated water table depth for all fields, taking account of freeboard, drain spacing and landcover
 - Validated against EA dipwell data
- 5. Calculated annual average effective watertable depth to take account of peat thickness;
- Calculated CO₂ and methane fluxes using regression equations from Evans et al. (2021)

1. Derived drain water level height;

2. Calculated the average freeboard for each field

- 3. Estimated drain spacing for all fields based on field geometry;
- 4. Simulated water table depth for all fields
- 5. Calculated annual average effective watertable depth to take account of peat thickness;

6. Calculated emissions (in $tCO_{2eq}/ha/yr$) that takes account of the differing Global Warming Potential of CO_2 and CH_4

Lowest values generally seen in areas of Fen (highest watertables)

Emissions by habitat

Combined Emissions Factors (t CO_{2eq} ha⁻¹ yr⁻¹) [Direct CO₂ + Direct CH₄]

	This study (median)	Evans et al. (2023)
Improved grassland (inc arable)	17.63	12.74 – 27.11*
Woodland	9.36	-
Fen	1.19	-1.05 - +2.43**

* Extensive grassland to cropland (peat > 40cm)** Near-natural Fen to Rewetted Fen

High drain water levels \neq high watertable

Dry year (1990) 11 21 31 41 51 0 0.15 **Drain spacing** 0.3 Depth of mid-field water table (m) **—**10 m 0.45 **—**30 m 50 m 0.6 **—**80 m **—**100 m 0.75 **—**150 m 0.9 —200 m Ditch water level 1.05 1.2 1.35

Week numbers

(Holman and Kechavarzi, 2011)

- Water management of peatlands is key driver of GHG emissions
- Watertable depth is function of weather, drain water level, soil properties and distance from drain
- First spatial modelling of emissions from peats in Broads (and possibly in UK)
 - High spatial diversity in emissions, due to variability in drainage, habitats, drain spacing etc
 - Highest emissions associated with improved grassland / cropland and lowest with Fen
 - Derived Emissions Factors broadly similar to published national values
- Reducing emissions requires <u>watertable</u> management high drain water levels don't necessarily mean a high watertable

Work was commissioned by the Broads Authority for the Broads Peat Partnership. It was funded by the Nature for Climate Peatland Grant – Discovery Grant, and Cranfield University

Thanks to:

- Ashish Dutta and Ian Truckell (Cranfield University) for method development and GIS analysis
- Daniel Wade (Broads Authority) for updated peat map
- Thomas Jones (Water Management Alliance) for pump levels
- Neil Klotz (Environment Agency) for shallow dipwell and stage board data

E: i.holman@cranfield.ac.uk

T: +44 (0) 1234 75 8277

W: www.cranfield.ac.uk/people/professorian-holman-787215

- 🕎 @cranfielduni
- O @cranfielduni
- 子 /cranfielduni

© Cranfield University

Emissions by habitat

Emissions Factors (t CO_{2eq} ha⁻¹ yr⁻¹) [Direct CO₂]

	This study (median)	Evans et al. (2023)
Improved grassland (inc arable)	17.59	11.78 – 27.06*
Woodland	9.13	-
Fen	-0.97	-5.06 to -0.69**

* Extensive grassland to cropland (peat > 40cm)** Near-natural Fen to Rewetted Fen

© Cranfield University

Emissions by habitat

Emissions Factors (t CO_{2eq} ha⁻¹ yr⁻¹) [Direct CH₄]

	This study (median)	Evans et al. (2023)
Improved grassland (inc arable)	0.03	0.05 – 0.96*
Woodland	0.23	-
Fen	2.17	3.12 - 4.01**

* Extensive grassland to cropland (peat > 40cm)** Near-natural Fen to Rewetted Fen

© Cranfield University